Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Med Chem ; 67(5): 3504-3519, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38377311

RESUMO

Photopharmacology is an emerging approach for achieving light-controlled drug activity. Herein, we design and synthesize a novel series of photoswitchable PI3K inhibitors by replacing a sulfonamide moiety with an azo group in a 4-methylquinazoline-based scaffold. Through structure-activity relationship studies, compound 6g is identified to be effectively switched between its trans- and cis-configuration under irradiation with proper wavelengths. Molecular docking studies show the cis-isomer of 6g is favorable to bind to the PI3K target, supporting compound 6g in the PSS365 (cis-isomer enriched) was more potent than that in the PSSdark (trans-isomer dominated) in PI3K enzymatic assay, cell antiproliferative assay, Western blotting analysis on PI3K downstream effectors, cell cycle analysis, colony formation assay, and wound-healing assay. Relative to the cis-isomer, the trans-isomer is more metabolically stable and shows good pharmacokinetic properties in mice. Moreover, compound 6g inhibits tumor growth in nude mice and a zebrafish HGC-27 xenograft model.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Camundongos Nus , Peixe-Zebra/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Relação Estrutura-Atividade , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Eur J Med Chem ; 264: 116015, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048697

RESUMO

Simultaneous inhibition of PI3K and HDAC has shown promise for treating various cancers, leading to discovery and development of their dual inhibitors as novel anticancer agents. Herein, we disclose a new series of PI3K/HDAC dual inhibitors bearing a benzamide moiety as the pharmacophore of HDAC inhibition. Based on systematic structure-activity relationship study, compounds 36 and 51 featuring an alkyl and benzoyl linker respectively were identified with favorable potencies against both PI3K and HDAC. In cellular assays, compounds 36 and 51 showed significantly enhanced antiproliferative activities against various cancer cell lines relative to single-target inhibitors. Furthermore, western blotting analysis shows compounds 36 and 51 suppressed AKT phosphorylation and increased H3 acetylation in MV4-11 cells, while flow cytometry analysis reveals both compounds dose-dependently induced cell cycle arrest and cell apoptosis. Supported by pharmacokinetic studies, compounds 36 and 51 were subjected to the in vivo evaluation in a MV4-11 xenograft model, demonstrating significant and dose-dependent anticancer efficacies. Overall, this work provides a promising approach for the treatment of AML by simultaneously inhibiting PI3K and HDAC with a dual inhibitor.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Antineoplásicos/química , Relação Estrutura-Atividade , Leucemia Mieloide Aguda/tratamento farmacológico , Zinco/farmacologia , Apoptose
3.
Bioorg Chem ; 140: 106814, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657197

RESUMO

Phosphatidylinositol 3-kinase (PI3K) signaling is among the most common alterations in cancer and has become a key target for cancer drug development. Based on a 4-methyl quinazoline scaffold, we designed and synthesized a novel series of bivalent PI3K inhibitors with different linker lengths and types. Bivalent PI3K inhibitor 27 demonstrates improved PI3K potency and antiproliferative cell activity, relative to the corresponding monovalent inhibitor 11. Compound 27 also significantly blocks the PI3K signal pathway, induces cell cycle arrest in G1 phase, and inhibits colony formation and cell migration. Furthermore, compound 27 shows dose-dependent anticancer efficacies in a HGC-27 xenograft mice model. Overall, this work provides a possible strategy to discover novel PI3K inhibitors for the treatment of cancers.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Animais , Camundongos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinase , Movimento Celular , Modelos Animais de Doenças , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
4.
ACS Med Chem Lett ; 14(8): 1100-1107, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583818

RESUMO

A novel photocaged PI3K inhibitor 2 was designed and synthesized by introducing a cascade photocaging group to block its key interaction with the kinase. Upon UV light irradiation, the photocaged compound released a highly potent PI3K inhibitor to recover its anticancer properties and a fluorescent dye for real-time reporting of drug release, providing a new approach for studying the PI3K signaling transduction pathway as well as developing precisely controlled cancer therapeutics.

5.
FEBS J ; 290(22): 5353-5372, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37528513

RESUMO

We previously identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cyclic adenosine diphosphoribose (cADPR)'s binding proteins and found that GAPDH participates in cADPR-mediated Ca2+ release from endoplasmic reticulum via ryanodine receptors (RyRs). Here, we aimed to chemically synthesise and pharmacologically characterise novel cADPR analogues. Based on the simulated cADPR-GAPDH complex structure, we performed the structure-based drug screening, identified several small chemicals with high docking scores to cADPR's binding pocket in GAPDH and showed that two of these compounds, C244 and C346, are potential cADPR antagonists. We further synthesised several analogues of C346 and found that its analogue, G42, also mobilised Ca2+ release from lysosomes. G42 alkalised lysosomal pH and inhibited autophagosome-lysosome fusion. Moreover, G42 markedly inhibited Zika virus (ZIKV, a flavivirus) or murine hepatitis virus (MHV, a ß-coronavirus) infections of host cells. These results suggest that G42 inhibits virus infection, likely by triggering lysosomal Ca2+ mobilisation and inhibiting autophagy.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Humanos , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Zika virus/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Autofagia , Lisossomos/metabolismo , Adenosina Difosfato Ribose/metabolismo
6.
BMC Cancer ; 23(1): 204, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869328

RESUMO

BACKGROUND: Laparoscopic colorectal surgery has been proved to have similar oncological outcomes with open surgery. Due to the lack of tactile perception, surgeons may have misjudgments in laparoscopic colorectal surgery. Therefore, the accurate localization of a tumor before surgery is important, especially in the early stages of cancer. Autologous blood was thought a feasible and safe tattooing agent for preoperative endoscopic localization but its benefits remain controversial. We therefore proposed this randomized trial to the accuracy and safety of autogenous blood localization in small, serosa-negative lesion which will be resected by laparoscopic colectomy. METHODS: The current study is a single-center, open-label, non-inferiority, randomized controlled trial. Eligible participants would be aged 18-80 years and diagnosed with large lateral spreading tumors that could not be treated endoscopically, malignant polyps treated endoscopically that required additional colorectal resection, and serosa-negative malignant colorectal tumors (≤ cT3). A total of 220 patients would be randomly assigned (1:1) to autologous blood group or intraoperative colonoscopy group. The primary outcome is the localization accuracy. The secondary endpoint is adverse events related to endoscopic tattooing. DISCUSSION: This trial will investigate whether autologous blood marker achieves similar localization accuracy and safety in laparoscopic colorectal surgery compared to intraoperative colonoscopy. If our research hypothesis is statistically proved, the rational introduction of autologous blood tattooing in preoperative colonoscopy can help improve identification of the location of tumors for laparoscopic colorectal cancer surgery, performing an optimal resection, and minimizing unnecessary resections of normal tissues, thereby improving the patient's quality of life. Our research data will also provide high quality clinical evidence and data support for the conduction of multicenter phase III clinical trials. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov, NCT05597384. Registered 28 October 2022.


Assuntos
Neoplasias do Colo , Laparoscopia , Humanos , Qualidade de Vida , Colonoscopia , Colectomia
7.
Clin Transl Sci ; 16(3): 412-421, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36601678

RESUMO

The National Cancer Institute's Small Business Innovation Research Development Center (NCI SBIR) supports the commercialization of novel cancer-related technologies by providing resources to 300-400 small businesses each year. Whereas Federal funding is crucial for the translation of technologies to the clinic, the majority of these technologies will need to undergo regulatory review to reach clinical testing. Many small businesses find navigating their regulatory pathway challenging, largely due to lack of regulatory expertise on small startup teams with limited revenue. In collaboration with the US Food and Drug Administration (FDA), NCI SBIR launched a new regulatory assistance program called Connecting Awardees with Regulatory Experts (CARE). The goal of the CARE program is to connect NCI-funded small businesses with the FDA to receive feedback on their regulatory questions during early-stage product development. The program has a multipronged support approach and also educates companies about the FDA process and existing resources. To date, 141 companies have participated in the interagency program. Follow-up surveys indicate that the program guided the companies in planning the next regulatory steps for their technology development (89%) and provided critical information that changed their future NCI small business grant project aims (81%). Overall, companies reported they would recommend the program to other companies (90%). This paper will discuss the CARE program outcomes as well as other NCI and FDA collaborations that support early-stage small businesses, including the joint development of funding opportunities and online resources that focus on the oncology startup community.


Assuntos
Oncologia , Empresa de Pequeno Porte , Estados Unidos , Humanos , United States Food and Drug Administration
8.
J Med Chem ; 65(24): 16372-16391, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36511661

RESUMO

Targeting the colchicine binding site on tubulin is a promising strategy to develop cancer therapeutics. Herein, we describe our systematic structure-activity relationship studies of benzamide derivatives that lead to an identification of a potent and orally active tubulin inhibitor 48, which occupied all three zones of the colchicine binding site in the X-ray co-crystal structure, inhibited tubulin polymerization, promoted mitotic blockade and apoptosis, and exhibited significant antiproliferative activities against various cancer cell lines. Compound 48 demonstrated favorable pharmacokinetic profiles, robust in vivo antitumor efficacies, and acceptable safety profiles. Furthermore, 48 overcame drug resistance in the paclitaxel-resistant A549 xenograft model. Collectively, 48 has been advanced into further preclinical evaluation for the development of next-generation microtubule-targeting drugs.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Linhagem Celular Tumoral , Sítios de Ligação , Relação Estrutura-Atividade , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
9.
BMC Public Health ; 22(1): 2025, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335401

RESUMO

BACKGROUND: Gastric cancer is a major public health problem worldwide. Social media has affected public's daily lives in ways no one ever thought possible. Both TikoTok and its Chinese version Douyin are the most popular short video posting platform. This study aimed to evaluate the quality, accuracy, and completeness of videos for gastric cancer on TikTok and Douyin. METHODS: The terms "gastric cancer" was searched on TikTok in both English and Japanese, and on Douyin in Chinese. The first 100 videos in three languages (website's default setting) were checked. QUality Evaluation Scoring Tool (QUEST) and DISCERN as the instrument for assessing the quality of the information in each video. Content was analysed under six categories (aetiology, anatomy, symptoms, preventions, treatments, and prognosis). The educational value and completeness were evaluated with a checklist developed by the researchers. RESULTS: A total of 78 videos in English, 63 in Japanese, and 99 in Chinese were analyzed. The types of sources were as follows: 6.4% in English, 4.8% in Japanese, and 57.6% in Chinese for health professionals; 93.6% in English, 95.2% in Japanese, and 3.0% in Chinese for private users; none in English and Japanese, but 39.4% in Chinese for other sources. In all, 20.5% in English, 17.5% in Japanese, and 93.9% in Chinese of videos had useful information about gastric cancer. Among the useful videos, the videos published in Chinese had the highest QUEST(p < 0.05) and DISCERN scores(p < 0.05), followed by those published in Japanese. Among the educational videos, prognosis in English (37.5%), symptoms in Japanese (54.5%), and prevention in Chinese (47.3%) were the most frequently covered topic. CONCLUSIONS: TikTok in English and Japanese might not fully meet the gastric cancer information needs of public, but Douyin in Chinese was the opposite.


Assuntos
Neoplasias , Mídias Sociais , Humanos , Disseminação de Informação , Gravação em Vídeo , Idioma
10.
Vaccines (Basel) ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146640

RESUMO

BACKGROUND: The plasma membrane provides a highly dynamic barrier for cancer cells to interact with their surrounding microenvironment. Membrane tension, a pivotal physical property of the plasma membrane, has attracted widespread attention since it plays a role in the progression of various cancers. This study aimed to identify a prognostic signature in colon cancer from membrane tension-related genes (MTRGs) and explore its implications for the disease. METHODS: Bulk RNA-seq data were obtained from The Cancer Genome Atlas (TCGA) database, and then applied to the differentially expressed gene analysis. By implementing a univariate Cox regression and a LASSO-Cox regression, we developed a prognostic model based on four MTRGs. The prognostic efficacy of this model was evaluated in combination with a Kaplan-Meier analysis and receiver operating characteristic (ROC) curve analysis. Moreover, the relationships between the signature and immune cell infiltration, immune status, and somatic mutation were further explored. Lastly, by utilizing single-cell RNA-seq data, cell type annotation, pseudo-time analysis, drug sensitivity, and molecular docking were implemented. RESULTS: We constructed a 4-MTRG signature. The risk score derived from the model was further validated as an independent variable for survival prediction. Two risk groups were divided based on the risk score calculated by the 4-MTRG signature. In addition, we observed a significant difference in immune cell infiltration, such as subsets of CD4 T cells and macrophages, between the high- and low-risk groups. Moreover, in the pseudo-time analysis, TIMP1 was found to be more highly expressed with the progression of time. Finally, three small molecule drugs, elesclomol, shikonin, and bryostatin-1, exhibited a binding potential to TIMP-1. CONCLUSIONS: The novel 4-MTRG signature is a promising biomarker in predicting clinical outcomes for colon cancer patients, and TIMP1, a member of the signature, may be a sensitive regulator of the progression of colon cancer.

11.
Front Immunol ; 13: 939836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898512

RESUMO

Gastric cancer (GC) is a disease characterized by high molecular and phenotypic heterogeneity and represents a leading cause of cancer-related death worldwide. The tumor immune microenvironment (TIME) affects the response to immunotherapy and the prognosis of patients with GC. Explorations of the TIME in GC and characterization of molecular subtypes might enhance personalized treatment and facilitate clinical decision-making. In this study, two molecular subtypes were defined through unsupervised consensus clustering based on immune-related dysregulated genes. Then, patients with different molecular subtypes of GC were shown to have distinct differences in sensitivity to immune checkpoint blockers (ICBs). The immune-related prognostic signature was established utilizing least absolute shrinkage and selection operator (LASSO)-Cox regression analysis. Three independent external cohorts and the IMvigor210 cohort were introduced to validate the robustness of IPRS. scRNA-seq data of GC samples were used to decipher the underlying mechanisms of how IPRS contributes to the TIME. GC biospecimens were collected for RT-qPCR to further validate our findings. In summary, we characterized the abnormal TIME of GC and constructed a reliable immune-related prognostic signature correlating with the response to immunotherapy. This study may provide new strategies for developing individualized treatments for patients with GC.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais/genética , Humanos , Fatores Imunológicos , Imunoterapia , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Microambiente Tumoral
12.
Front Pharmacol ; 13: 894981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694250

RESUMO

Background and aims: Saikosaponin d (SSd) has a steroidal structure and significant anti-inflammatory effects. The purpose of this study was to explore the mechanism underlying SSd's inhibitory effects on liver fibrosis. Methods: Wild-type and estrogen receptor knockout (ERKO) mice were treated with CCl4 to establish liver fibrosis mouse models. The effects of SSd on hepatic fibrogenesis were studied in these mouse models. Hepatic stellate cells (HSCs) were activated by H2O2 to investigate the potential molecular mechanisms. The establishment of the models and the degrees of inflammation and liver tissue fibrosis were evaluated by detecting changes in serum liver enzymes and liver histopathology. The expression of α-SMA and TGF-ß1 was determined by immunohistochemistry. The expression and significance of NLRP3 inflammasome proteins were explored by RT-PCR and Western blotting analyses. The mitochondrial ROS-related indexes were evaluated by MitoSOX Red. Results: In wild-type and ERKO mice treated with CCl4, the fluorescence expression of mitochondrial ROS was up-regulated, while the mitochondrial membrane potential and ATP content were decreased, suggesting that the mitochondria were damaged. In addition, the expression of NLRP3 inflammatory bodies and fibrosis markers (α-SMA, TGF-ß, TIMP-1, MMP-2, and Vimentin) in liver tissue increased. Furthermore, the above indexes showed the same expression trend in activated HSCs. In addition, the peripheral serum ALT and AST levels increased in CCl4-induced liver injury model mice. And HE staining showed a large number of inflammatory cell infiltration in the liver of model mice. Picric acid-Sirius staining and Masson staining showed that there was significant collagen fibrous tissue deposition in mice liver sections. IHC and WB detection confirmed that the expression of α-SMA and TGF-ß1 increased. Liver fibrosis scores were also elevated. Then, after SSd intervention, the expression of ROS in wild-type mice and αERKO mice decreased, mitochondrial membrane potential recovered, ATP level increased, NLRP3 inflammasome and fibrosis indexes decreased, liver enzyme levels decreased, and liver pathology showed liver inflammation. The damage and collagen deposition were significantly relieved, the expression of α-SMA and TGF-ß1 was decreased, and the fibrosis score was also decreased. More importantly, the effect of SSd in alleviating liver injury and liver fibrosis had no effect on ßERKO mice. Conclusion: SSd alleviated liver fibrosis by negatively regulating the ROS/NLRP3 inflammasome through activating the ERß pathway. By establishing liver fibrosis models using wild-type and ERKO mice, we demonstrated that SSd could alleviate liver fibrosis by inhibiting the ROS/NLRP3 inflammasome axis through activating the ERß pathway.

13.
Bioorg Med Chem Lett ; 71: 128825, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35644299

RESUMO

The synergistic anti-tumor effect by simultaneous inhibitions of PI3K and HDAC has been verified to provide the rationality of PI3K/HDAC dual inhibitors for cancer treatment. Notably, the outstanding effect of PI3K/HDAC dual inhibitors against DLBCL has been paid much attention, especially for RR-DLBCL. Our previously reported 4-methylquinazoine scaffold based PI3K/HDAC dual inhibitors could suppress the growth of solid tumors and hematologic malignancies both in vitro and in vivo, validating the potential as new therapeutic agents for cancer. In this research, we further investigated the anti-tumor activity of one of our compounds against DLBCL cell lines and in vivo zebrafish xenograft model as well as the underlying mechanism, hoping to provide a novel therapeutic agent for treating DLBCL.


Assuntos
Inibidores de Histona Desacetilases , Linfoma Difuso de Grandes Células B , Animais , Apoptose , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
14.
Front Oncol ; 12: 844990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686089

RESUMO

Objective: This study was conducted in order to gain a better understanding of the molecular mechanisms of stomach adenocarcinoma (STAD), which is necessary to predict the prognosis of STAD and develop novel gene therapy strategies. Methods: In this study, the gene expression profile of GSE118916 in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas Program (TCGA) was used to explore the differential co-expression genes of STAD and normal tissues. Results: A total of 407 STAD samples were collected, consisting of 375 from stomach adenocarcinoma tissues and 32 from normal tissues, as well as RNA-seq count data for 19,600 genes. Forty-two differentially expressed genes were screened by weighted gene co-expression network analysis (WGCNA) and differentially expressed gene analysis. According to the functional annotation analysis of the clusterProfiler R package, these genes were analyzed for GO function enrichment, digestion (biological process), tube bottom material membrane (cell component), and oxidoreductase activity (molecular function). The KEGG pathway was enriched in gastric acid secretion and chemical carcinogenesis. In addition, Cytoscape's cytoHubba plug-in was used to identify seven hub genes (EWSR1, ESR1, CLTC, PCMT1, TP53, HUWE1, and HDAC1) in a protein-protein interaction (PPI) network consisting of 7 nodes and 11 edges. Compared with normal tissues, CLTC and TP53 genes were upregulated in stomach adenocarcinoma (P < 0.05). TP53 was expressed differently in stages II and IV, EWSR1 was expressed differently in stages II and III, and ESR1 was expressed differently in stages I-III. Among the seven hub genes, Kaplan-Meier analysis and TCGG showed that the expression levels of HDAC1 and CLTC were significantly correlated with OS in patients with stomach adenocarcinoma (P < 0.05). GEPIA2 analysis showed that ESR1 expression was closely correlated with OS and DFS in gastric adenocarcinoma (P < 0.05). Then, the expression of the genes and their correlations were revealed by the R2 Platform (http://r2.amc.nl). Finally, we collected 18 pairs of gastric mucosal tissues from normal people and cancer tissues from patients with stomach adenocarcinoma. The expression levels of the above seven hub genes and their relative protein expression were detected by RT-PCR and immunohistochemistry (IHC). The results showed that the gene and protein expression levels in stomach adenocarcinoma tissues were increased than those in the normal group. Conclusion: In summary, we believe that the identified hub genes were related to the occurrence of stomach adenocarcinoma, especially the expression of ESR1, HDAC1, and CLTC genes, which are related to the prognosis and overall survival of patients and may become the potential for the future diagnosis and treatment of STAD.

15.
Proc Natl Acad Sci U S A ; 119(19): e2201288119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507870

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever, a highly contagious and usually fatal disease in pigs. The pathogenesis of ASFV infection has not been clearly elucidated. Here, we used single-cell RNA-sequencing technology to survey the transcriptomic landscape of ASFV-infected primary porcine alveolar macrophages. The temporal dynamic analysis of viral genes revealed increased expression of viral transmembrane genes. Molecular characteristics in the ASFV-exposed cells exhibited the activation of antiviral signaling pathways with increased expression levels of interferon-stimulated genes and inflammatory- and cytokine-related genes. By comparing infected cells with unexposed cells, we showed that the unfolded protein response (UPR) pathway was activated in low viral load cells, while the expression level of UPR-related genes in high viral load cells was less than that in unexposed cells. Cells infected with various viral loads showed signature transcriptomic changes at the median progression of infection. Within the infected cells, differential expression analysis and coregulated virus­host analysis both demonstrated that ASFV promoted metabolic pathways but inhibited interferon and UPR signaling, implying the regulation pathway of viral replication in host cells. Furthermore, our results revealed that the cell apoptosis pathway was activated upon ASFV infection. Mechanistically, the production of tumor necrosis factor alpha (TNF-α) induced by ASFV infection is necessary for cell apoptosis, highlighting the importance of TNF-α in ASFV pathogenesis. Collectively, the data provide insights into the comprehensive host responses and complex virus­host interactions during ASFV infection, which may instruct future research on antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Antivirais/metabolismo , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Suínos , Replicação Viral/fisiologia
16.
J Virol ; 96(3): e0166721, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787458

RESUMO

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus that causes African swine fever, a lethal hemorrhagic disease that currently threatens the pig industry. Recent studies have identified the viral structural proteins of infectious ASFV particles. However, the functional roles of several ASFV structural proteins remain largely unknown. Here, we characterized the function of the ASFV structural protein H240R (pH240R) in virus morphogenesis. pH240R was identified as a capsid protein by using immunoelectron microscopy and interacted with the major capsid protein p72 by pulldown assays. Using a recombinant ASFV, ASFV-ΔH240R, with the H240R gene deleted from the wild-type ASFV (ASFV-WT) genome, we revealed that the infectious progeny virus titers were reduced by approximately 2.0 logs compared with those of ASFV-WT. Furthermore, we demonstrated that the growth defect was due to the generation of noninfectious particles with a higher particle-to-infectious titer ratio in ASFV-ΔH240R-infected primary porcine alveolar macrophages (PAMs) than in those infected with ASFV-WT. Importantly, we found that pH240R did not affect virus-cell binding, endocytosis, or egress but did affect ASFV assembly; noninfectious virions containing large aberrant tubular and bilobulate structures comprised nearly 98% of all virions observed in ASFV-ΔH240R-infected PAMs by electron microscopy. Notably, we demonstrated that ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in PAMs. Collectively, we show for the first time that pH240R is essential for ASFV icosahedral capsid formation and infectious particle production. Also, these results highlight the importance of pH240R in ASFV morphogenesis and provide a novel target for the development of ASF vaccines and antivirals. IMPORTANCE African swine fever is a lethal hemorrhagic disease of global concern that is caused by African swine fever virus (ASFV). Despite extensive research, there exist relevant gaps in knowledge of the fundamental biology of the viral life cycle. In this study, we identified pH240R as a capsid protein that interacts with the major capsid protein p72. Furthermore, we showed that pH240R was required for the efficient production of infectious progeny virions as indicated by the H240R-deleted ASFV mutant (ASFV-ΔH240R). More specifically, pH240R directs the morphogenesis of ASFV toward the icosahedral capsid in the process of assembly. In addition, ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in primary porcine alveolar macrophages. Our results elucidate the role of pH240R in the process of ASFV assembly, which may instruct future research on effective vaccines or antiviral strategies.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Proteínas do Capsídeo/genética , Citocinas/metabolismo , Macrófagos/metabolismo , Deleção de Sequência , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/ultraestrutura , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Citocinas/genética , Suscetibilidade a Doenças/imunologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Suínos , Vírion/ultraestrutura , Internalização do Vírus , Replicação Viral
17.
Front Pharmacol ; 12: 741697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658878

RESUMO

PURPOSE: To investigate the efficacy and mechanism of compound 23, a PI3K/HDAC dual-target inhibitor, on hematologic tumor cells in vitro and in vivo. Methods: The MTS Kit was used to study the antiproliferative effects in vitro. Western blot was used to analyze the involved signaling pathways. Flow cytometry was used to analyze apoptosis and the cell cycle. The antiproliferative effects were evaluated in vivo using EL4 and A20 xenograft models. The CCLE database was used to analyze gene expression. RESULTS: Compound 23 significantly inhibited the proliferation of hematologic tumors; it simultaneously regulated PI3K/HDAC pathways and induced apoptosis and G1-phase arrest in EL4, NB4, and A20 cells in vitro. When tested in vivo, compound 23 significantly inhibited the proliferation of EL4 and A20. The expression levels of ErbB2 and ErbB3 decreased in hematologic tumors compared with it in solid tumors. CONCLUSION: Compound 23 modulates the PI3K/HDAC pathway, which results in significant inhibition of hematologic tumor proliferation in vivo and in vitro. The differential levels of ERBB2 and ERBB3 might be related to the difference in the effect of compound 23 on hematologic tumors and solid tumors.

18.
J Med Chem ; 64(22): 16626-16640, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34676759

RESUMO

Increasing evidence shows that the CXC chemokine receptor 2 (CXCR2) signaling pathway is essentially implicated in the recruitment of myeloid-derived suppressor cells (MDSCs) to the tumor microenvironment and leads to MDSC-mediated immune suppression. Therefore, CXCR2 has recently emerged as a promising drug target for cancer immunotherapy. In this paper, benzocyclic sulfone derivatives were designed as potent CXCR2 antagonists. Structure-activity relationship studies resulted in two lead compounds 9b and 11h, which demonstrated double-digit nanomolar potencies against CXCR2 and significantly inhibited neutrophil infiltration into the air pouch in an in vivo setting. More importantly, 9b and 11h dose-dependently inhibited the tumor growth through oral administration in the Pan02 mouse model. Further cytometry and immunohistochemical analyses revealed that 9b and 11h could reduce the infiltration of neutrophils and MDSCs and enhance the infiltration of CD3+ T lymphocytes into the Pan02 tumor tissues, shedding light on their mechanisms of action in cancer immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Terapia de Imunossupressão , Imunossupressores/farmacologia , Neoplasias/tratamento farmacológico , Receptores de Interleucina-8B/antagonistas & inibidores , Sulfonas/farmacologia , Antineoplásicos/química , Humanos , Imunossupressores/química , Imunoterapia , Sulfonas/química , Microambiente Tumoral
19.
Artigo em Inglês | MEDLINE | ID: mdl-34630612

RESUMO

OBJECTIVE: To verify whether ginsenoside Rg1 alleviates liver hepatic ischemia-reperfusion injury (IRI) in mice by upregulating the expression of Yes-associated protein (YAP) through estrogen receptor alpha pathway. METHODS: The whole hepatic IRI model and the local (70%) hepatic IRI model were established, respectively. The whole hepatic IRI model was used to observe the survival curve of mice, and the mouse models with 70% hepatic IRI were used to explore the mechanism of liver injury about Rg1 in hepatic IRI. Wild-type C57BL/6 mice were randomly divided into some groups: (1) the whole hepatic IRI model group: the survival rate of mice was observed at 0, 30, 60, 90, and 120 min after ischemia and Rg1 intervention (90 min after ischemia), with 10 mice in each group, and (2) the 70% hepatic IRI model group: sham operation group, I/R model group, verteporfin (VP) group, doxycycline (Doxy) group, 17ß-estradiol (E2) group, clomiphene (Clom) group, and Rg1 group with 6 mice in each group. The level of serum alanine aminotransferase (ALT) was measured by enzyme labeling instrument, the degree of liver injury was analyzed after hematoxylin-eosin (HE) staining, and the function of mitochondria was detected in fresh liver tissue, including mitochondrial membrane potential with JC-1 (5,5',6,6'-tetrachloro1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide), adenosine triphosphate (ATP), and mitochondrial reactive oxygen species (ROS), and the expression of YAP and estrogen receptor alpha (ERα) genes and proteins were detected by real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blot. RESULTS: The whole hepatic IRI model showed that the survival rate of mice decreased with the prolongation of ischemia time. IRI model mice showed mitochondrial damage, JC-1 red/green fluorescence value and ATP significantly decreased, and ROS production increased; in comparison, in the Doxy and E2 intervention group, JC-1 red/green fluorescence value and ATP production increased and ROS downregulated, indicating that mitochondrial function returned to normal. The level of serum ALT showed that the liver enzyme increased with the time of reperfusion and decreased gradually after 6 hours. The results of Western blot and PCR showed that the expression of YAP and ERα showed the same trend. The IRI model mice were observed after 90 minutes of ischemia and 6 hours of reperfusion. Compared with the corresponding sham group, the expression of YAP in the liver tissue of the Doxy group, E2 group, and Rg1 intervention group increased, and the expression of ERα in the E2 group and Rg1 group increased. HE staining showed that a large number of inflammatory cell infiltration could be seen in the liver tissue of the model group, but it decreased in the Doxy and E2 intervention groups. CONCLUSION: Ginsenoside Rg1 exerts an estrogenic effect by activating ERα, upregulating the expression of YAP, reducing liver oxidative stress injury, and inhibiting mitochondrial injury to protect the liver from ischemia-reperfusion injury in mice.

20.
Clin Transl Sci ; 14(6): 2124-2131, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34387931

RESUMO

The National Cancer Institute's Small Business Innovation Research Development Center (NCI SBIR) provides federal research and development funding and commercialization resources to more than 400 small businesses each year developing novel technologies to prevent, diagnose, and treat cancer. Although federal funding is vital for life science startups at the early stage of development, it is often insufficient to translate the technology from discovery to commercial product. Early-stage startups must connect to follow-on capital and resources to bring NCI-funded technologies to patients. Most startups face challenges in securing additional funding due to lack of access to investors and strategic partners and the ability to effectively pitch their technology. In 2015, the NCI SBIR started the Investor Initiatives program to connect funded small businesses with targeted investors and strategic partners to address the aforementioned obstacles. This program leverages an extensive network of investors and partners to conduct business-focused reviews and provide pitch coaching. The program incentivizes earlier collaborations between NCI-funded companies and private investors through various channels. The program has supported 117 companies from years 2016-2019 to attend 27 investor showcase events. Follow-up surveys show that the program and the assistance offered by NCI SBIR have contributed to a total of 32 completed deals as of April 29, 2020. This paper will discuss the Investor Initiatives program and its outcomes from 2016 to 2019 and demonstrate the effectiveness of a federal program that leverages public-private partnerships to assist portfolio companies with raising follow-on funding to accelerate the translation of research into clinical practice.


Assuntos
Financiamento Governamental , National Cancer Institute (U.S.) , Parcerias Público-Privadas , Empresa de Pequeno Porte , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA